
Group theory of pseudo-oscillators

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1979 J. Phys. A: Math. Gen. 12 2399

(http://iopscience.iop.org/0305-4470/12/12/018)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 30/05/2010 at 19:16

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/12/12
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen., Vol. 12, No. 12, 1979. Printed in Great Britain 

Group theory of pseudo-oscillators 

Yu F Smirnov and A P Shustov 
Institute of Nuclear Physics, Moscow State University, Moscow 117234, USSR 

Received 16 January 1979 

Abstract. It is shown that O(p,  q )  and Sp(2, R) are complementary groups in the space of 
pseudo-oscillator H, eigenfunctions. The structure and irreducible representation of both 
invariancy algebra and generating-spectrum algebra are discussed in detail. It is proved that 
the transformation brackets between the basis diagonalising the compact generator and the 
basis diagonalising the non-compact generator in the case of discrete series of irreducible 
representations of the SU(1,l)  group coincide with the Clebsch-Gordan coefficients for the 
Kronecker product D”4+C3D”4- of two irreducible representations of the SU(1,l)  group 
belonging to positive and negative discrete series respectively. 

1. Introduction 

A detailed analysis of the hyperspherical harmonic structure was made by Knyr et a1 
(1975) on the basis of the complementary groups Sp(2, R) and O(n) (Moshinsky and 
Quesne 197 1). In particular it was shown that n-dimensional hyperspherical harmonics 
may be constructed from the hyperspherical harmonics for subspaces with fewer 
dimensions by using vector coupling of the non-compact moments for the Sp(2, R) 
group. The transformation brackets between the bases corresponding to different types 
of reduction of the O(n) group to its subgroups (the so called ‘tree’ coefficients) coincide 
with the 3mj-symbols for the Sp(2, R) (or SU(1, l ) )  group. These conclusions were 
obtained by analysing the n-dimensional harmonic oscillator system. In this case we 
dealt only with the positive discrete series of the unitary irreducible representations 
(UIR) of the SU(1,l) group, including the ray UIR with angular moments j which are 
multiples of $. 

The concept of complementary groups (Moshinsky and Quesne 1971) may be used 
for the analysis of the hyperspherical harmonic structure of the non-compact O(p, 4) 
group. In this case, it is necessary to investigate the properties of the pseudo-oscillator 
system with the Hamiltonian 

where 

Hs = & p 5  + n 3 ,  s = 1 ,2 , .  . . , p + 4  

is the usual Hamiltonian of the linear harmonic oscillator. 
One can use such a Hamiltonian in the relativistic quark model (Cocho and Flores 

1971, Feynman er a1 1971) for calculations of relativised form factors for elastic and 
inelastic electron scattering by nuclei (Cocho and Mondragon 1969, Cocho and Flores 
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1970a,b). In addition, the O ( p , q )  group (which is the symmetry group of the 
Hamiltonian (1.1)) is connected very closely with general relativistic problems. In 
particular, it is interesting to perform the mapping of the continuum spectrum of the 
Coulomb and Coulomb-Dirac problems onto the pseudo-oscillator in the spirit of the 
calculations performed by Moshinsky (1971) and Basu (1971). 

In $ 2  it will be shown that Sp(2, R) and O(p, q )  are complementary groups. We 
then consider the simplest example: the two-dimensional pseudo-oscillator. The 
symmetry group for this system will be discussed in $ 3, and the UIR basis of the SU(1, 1) 
group diagonalising the non-compact generator will be constructed. 

The dynamical group of the Hamiltonian Hll is described in 0 4. It will be shown 
that the transformation brackets between the usual Cartesian wavefunctions of a 
two-dimensional harmonic oscillator and the basic functions mentioned above must 
coincide with the Clebsch-Gordan coefficients for the Kronecker product 

of two UIR of the SU(1,l)  group belonging to the positive and negative 
discrete series respectively. The application of this approach to the arbitrary pseudo- 
oscillator system will be described in future publications. 

D 1/41 i/4- 

2. Complementary groups Sp(2, R) and O(p, q )  

Let us introduce the usual creation and annihilation operators 

+ 1 /  a 1 
a, =: x, +- , i = l , 2  , . . . ,  p ,  

a ,  =z\x,---), J 2 (  a b ,  
o r = p + l , p + 2  , . . . ,  p + q  (2.1) 1 

a,- - x,+- , --( + 1  
a, =z(x,-:), J 2  

with the standard commutation rules 

[as, a: 1 = &s,, [a,, a,,] = [at, at,] = 0, s,s'= 1 , 2 , .  . . , p + q .  

The operator of infinitesimal rotation in the Euclidean plane (x i ,  xi) (or (xm,  x p ) )  may be 
represented in the form 

L,, = X ,  @/ax,) - X ,  (alax,) = U :U, - U ;U,, 

Lap = aa'ap -a&&. 
(2.2) 

The operator of infinitesimal rotation in the non-Euclidean plane (xr ,  x , )  may be written 
as 

L,, =xt(a/ax,)+x,(a/axi) =u:u,' -w,. (2.3) 

The angular part of the Laplacian A in equation (1.1) (i.e. the Casimir operator for the 
O(p,  q )  group) is of the form 

A =  $(LijL;; + Li,L,, + L,,L;, +Lm&p,). (2.4) 

Here and in the remainder of this section the repeated indices mean the summation 
from 1 top  for italic indices and from p + 1 top  + q for Greek indices. The eigenvalues A 
of this operator will be given by the expression A = k(k + n - 21, ( n  = p i s ) .  
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The dynamical group of the Hamiltonian (1.1) is the Sp(2, R) group with generators 
+ +  

~ + = $ i ( a t a :  -anan), 

Io = $[a ;ai - a:a, +T(p - s) ]  = $H,. 
I- = &aiai - a n a a  1, 

1 (2.5) 

These generators have the properties 

(I*)+ = -17, I ;  =Io, [I+, I-] = 210,  [Io, I*] = *I*. (2.6) 

The Casmir operator Q for the Sp(2, R) group is determined by the expression 

Q = 1-1, + I; +Io. (2.7) 

Its eigenvalues will be designated as j (  j + l), and in particular we have 

(T E (-00, +00) (2.8) 

Comparing the Casimir operator of the O(p, q )  and S q ( 2 ,  R )  groups (equations 

(2.9) 

1 j = -2+ia, 

for UIR of the principal continuous series realised in the pseudo-oscillator case. 

(2.4) and (2.7)) it is easy to find that 
Q =$A+&n2--n. 1 

Therefore fixing the UIR D’ of the S6(2, R) group simultaneously determines the UIR Dk 
of the O ( p ,  4) group. Hence these two groups are complementary groups, and 

j = $ k + $ n - l .  (2.10) 

It is clear from this equation that in the pseudo-oscillator system the UIR Dk of the 
O( p ,  4) group may be realised with 

k =2ia-;(n -2). (2.11) 

Let us now turn to the simplest two-dimensional pseudo-oscillator. 

3. Symmetry group of the two-dimensional pseudo-oscillator 

The symmetry group of the Hamiltonian H i ,  = H 1  -H2 is the SU(1, l), group with 
generators 
Ji=$i(a:az’ +aiaZ),  J - ’  2-2(a*a2 + -aid J o-z(a:al+azfaz+l). -1 (3.1) 

We shall label the symmetry and dynamical SU(1, 1) groups by indices ‘s’ and ‘d’, 
respectively. 

The generators (3.1) satisfy the relations 

(J i . z )+  = -J i . z ,  J i  = Jo, CJi, 41 = iEijkJk, [ J J ,  H111= 0. (3.2) 
We shall also need the generators 

J- = ialaz = (-J+)+, J _ *  + + + - IU 1 U 2 = (-J-)+, 

[Jo, J*I = *J*, [J+, J - ]  = 2J0. 

The eigenvalue problem 

HII+(XI, X Z )  = n+(xl ,  x 2 )  

(3.3) 

(3.4) 
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can be separated into Cartesian variables xl, x2 and we have 

CL"(X1, x2) = CL,I(xl)CL"2(xz) (3.5) 

as the eigenfunctions of Hll. Here n = n l  - n2 = 0, *l, *2,. . . , n l ,  n2 = 0, 1,2,  . . . , 
and CLnt(xt) are the usual wavefunctions for the linear harmonic oscillator. 

The following properties can be easily proved: 

GIninz) =a(,'- l ) Ininz) ,  G = J - J + + J t + J o ,  

Joln1nz) = S(N + l)ln1nz), N = nl+ n2, (3 .6)  

i.e. the eigenfunctions Inlnz) with fixed n = n l  - nz and all possible N = n l  + n2 = n, 
n +2, n +4,. . . belong to the UIR D'+ of the SU(1, l), group with J =$(inl- 1). It 
should be noted that each positive discrete series U I R  is presented in the spectrum of 
Hll twice (except for n = 0, J = -$), because the eigenvalues n and -n correspond to 
the same eigenvalues of the Casimir operator G. By direct calculation we obtain 

J*ln1nz) =J*jJM) = [ ( J  r M ) ( J  * M  + l ) ] t (JM f l), 

J = $(in1 - nzl- l), M = $ ( H I +  n2+ 1). (3.7) 
Equation (3.4) can also be separated into hyperbolic coordinates 

in sector I 
x1> IXZI 

Ix2l<-x1 

in sector I1 

I 
x2 = -r sinh cp I 
XI= r cosh cp 

x 2  = r sinh cp 

x1  = -r cosh cp 

x1 = r sinh cp 

x2 = r cosh cp 

in sector I11 

x1 = -r sinh cp 

x2 = -r cosh q 

in sector IV 

HereOsr<oo ,  -oo<cp<co. 
The Hamiltonian Hll is of the form 

(3.8) 

in sector I. Since x1 and x2 change their signature in sector 11, the Hamiltonian 
conserves the same form (3.9) in this sector. In sector I11 there is a permutation of x1 
and x2; therefore Hll has the form (3.9) with the opposite signature. In sector IV HI1 
has the same form as in sector 111. Therefore we can seek the solution of (3.4) only in 
sectors I and 111, because the solutions for sectors I1 and IV can be found by the 
reflection of axes x1 or XZ. 

As a result we have the following equations: 

(3.10) 

Here 41(x1, x2) is the wavefunction in sector I (x: -x: > 0), and 42(xlr x2) is the 
wavefunction in sector I11 (x: - x i  c 0). Since our purpose is to compare the solutions 
of equation (3.4) in both Cartesian and hyperbolic coordinates, we shall seek the 
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solutions of equation (3.10) which correspond to the same eigenvalues E = n = 0, * l ,  
*2, . . . as in the case of Cartesian coordinates. Besides, we shall assume that 

4i(rt C P )  + 0, i = l , 2  (3.11) 

for r + CO. Such behaviour is connected with the fact that the functions Inln2) have 
asymptotic properties -rN exp[(-r2 ch 2cp)/2] in each sector of the plane (xl, x2). Let 
us separate the angular and radial variables: 

4i(r, 4 ~ )  = Ri(r)+i(q)* (3.12) 

This corresponds to the diagonalisation of the non-compact generator J2 = iL12 = 
-f(a/dcp). Since J2 is anti Hermitian, it has the imaginary eigenvalues 

J~[+u((~)li = id+u(cp)li. 

Therefore we obtain 

[+,(cp)11,2 = (1/J3 e-2iu*, -CO< U <CO. (3.13) 

Substituting (3.12), (3.13) into equation (3.10) we can find the following equation for 
the radial wavefunctions, 

(3.14) 

where the upper signature corresponds to sector I and the lower one corresponds to 
sector 111. 

After the transformation [RflU(r)li = r-'[,~&)]~, 6 = r', equation (3.14) reduces to 
the usual Whittaker equation (Bateman 1953) 

Taking into account the boundary conditions (3.1 l ) ,  we can write the solution of our 
problem in the form 

( 3 . 1 5 ~ )  

where 
G1, = {r[ ( l+  n) /2  -iu]}-', Gn ={r[(l -n)/2-ia]}-'. (3.15b) 

The wavefunctions (3 .154  are characterised by the following properties: 
(1) P l 2 4 n u b 1 ,  x 2 )  = 4 n u ( X 2 ,  x1) = 4-flvb1, x2); 
(2) These functions form the standard basis of the UIR of the SU(1, l )  group, as will 

(3) Finally, according to Montgomery and O'Raifertaigh (1974), the wavefunctions 
be shown later in Ei 3; 

( 3 . 1 5 ~ )  are orthonormalised: 

Wn/z,iu(~2) wn*/2.iu(r2) 
r r[(l+ n)/2 + i ( ~ ] r [ ( l +  n ' ) / 2  - ic]  

(3.16) 

(3.17) 
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The functions Inu) with fixed n are the basis vectors of the UIR D’+(J =;(in] - 1)). This 
basis is continuous, because the non-compact generator 52 is diagonalised. It cor- 
responds to the reduction of the SU(1, l), group to the O(1, 1) subgroup. Equation 
(3.14) contains the attractive potential r-’. In such cases, it is necessary to expand the 
Hamiltonian to the self-conjugated form (Case 1950). Obviously we can solve this 
problem by choosing the equidistant spectrum of Hll and the boundary conditions 
(3.11). 

We are interested in the transformation brackets (n ln2)na)  between two types of 
bases for the UIR D’+ of the SU(1, l)s group. A similar problem was analysed by 
Montgomery and O’Raifertaigh (1974), but in their work the continual basis was 
obtained by the diagonalisation of the operator J 1  +iJo. Therefore the calculation of 
( n l n z l n u )  is a new problem. However, it is reasonable to discuss first the dynamical 
group of the Hamiltonian Hll, which allows us to look at the transformation brackets 
from another point of view. 

4. Dynamical group of the two-dimensional pseudo-oscillator 

The dynamical group SU( 1, l)d of the Hamiltonian HI1 is determined by the generators 

I -  = &a a - u :a l) , 1-1. + + 
+ - 21(u 1 a 1 - azaz ) ,  

1-1 0 - 2( a ;U 1 - a ;a 2) = &I1 1. 

In accordance with (2.9) we have 

(4.1) 

Qlnu)= - ( ~ ’ + i ) l n a ) ,  Q = J ~ - $ .  

Hence the functions Ina) with fixed U and all possible n = 0, i l ,  *2, . . . form a basis of 
the UIR D’( j = - $ + iu) of the SU( 1, l)d group. It should be noted that the even values 
of n correspond to the first principal continuous series of UIR, and the odd n belong to 
the second principal series. Each UIR D’ is contained in the spectrum of Hll twice, 
because the reverse of the signature of U does not change the eigenvalue of the Casimir 
operator. 

The generators (4.1) can be rewritten in hyperbolic coordinates as (sector I) 

I -  = $ ( r 2  + 1 + r ( d / a r )  - H I ] )  ( 4 . 2 ~  1 - 1 .  2 + - 21(r - 1 - r ( d / d r )  --HlI), 

1 -1 - 2i(r2-K1),  12 = - - i ( r (a /ar )+  I ) ,  I ,  + iIo = 4ir2. (4.26 
or 

In sector 111, I ,  and I- change their roles. 
It was shown by Mukunda and Radhakrishnan (1972, 1974) that the UIR of the 

SU(1, l ) d  group which belongs to the principal series can be realised by using the 
eigenfunctions of the two-dimensional pseudo-oscillator. The generator I2 was 
diagonalised, and the basis corresponding to the reduction SU(1, l),, 2 0(1, 1) was 
obtained by Mukunda and Radhakrishnan (1972, 1974). We are interested in the 
SU(1, l ) d ~ 0 ( 2 )  reduction that is realised by the basis functions ( 3 . 1 5 ~ ) .  In fact by 
using the recurrent relations (Bateman 1953, Gradshteyn and Ryzhik 1963)t 

z (ala2)wA.g ( 2 )  = (A -12) W A , ~  ( 2 )  - [ iLz  - (A -?i)’I WA -1.w (2 ) Y  

( 2  -2A) WA,,(Z) = [(A -$I2  - P 2 1 w ~ - ~ . g ( z )  + W A + I , ~ ( ~ ) ,  (4.3) 
+ The second recurrent relation for the Whittaker functions is absent in these textbooks, but it may easily be 
proved by using the recurrent relations for the confluenthypergeometrical functions @ ( U ;  c ;  z ) .  
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we obtain the expressions 

(4.4) 

It means that the vectors Inv) form the standard basis of the UIR of the SU(1, 1)d group 
belonging to the principal series (except for the inessential phase factor (-)'). 

Now let us ask ourselves what is the basis Inln2) in relation to the SU(1, 1)d group. It 
should be noted that the operators $ia:a:, $ialal, $(a:al + f) are the generators of the 
UIR D1l4+ of the SU(1, l)d group (Knyr et al 1975). The wavefunctions I,+,,~(X~) of the 
linear harmonic oscillator are the basis vectors of this UIR. On the other hand, the 
operators -5ia2 U Z ,  -$ia2a2, -$(a;az +$) can be considered as generators of the UIR 

are the basis of this UIR belonging 
to negative discrete series. Hence a set of functions Inlnz) is a basis for the Kronecker 
product D1/4'C3D'/4- of two UIR of the SU( 1, 1 ) d  group. This product is reducible and 
can be expanded in terms of the UIR of the principal series (Mukunda and Radhakrish- 
nan 1974): 

1 + +  

of the SU(1, 1)d group. The functions ~ 1 / 4 -  

Therefore the transformation brackets (nln21nu) represent the Clebsch-Gordan 
coefficients for the SU(1, 1 ) d  group: 

(4.6) 

They may be calculated by using the general algebraic formulae given by Holman and 
Biedenharn (1966). The following properties characterise these coefficients: 

1- 1 ( n l n 2 / n v ) = [ - $ + ,  i n l ;  - a  , -in21-i+ia, 5(nl-nz)]. 

1 (nln2lnu)(nu'lnln2) = S(u-a'), 
n1n2 

J d r  (nlnzlna>(naln;ni> = ~ , , ~ , , i ~ , , ~ , , i ,  

- d q  ezi"'+'lnln2) = (nlnzlna)R,,(r). 
1 

J, 
It is easy to prove directly the validity of the last formula at n l  = n2 = n = 0: 

1 2 1  1 
dq  exp(2iucp) exp( -$r2 cosh c p )  = -Ki, (k) = Wo,iu(r2) -. 

J, 7T r 

In the general case, a set of new relations between the special functions K,, W,,,, etc 
may be obtained on the basis of equation (4.8). It can also be considered as the 
separation of the radial part of the two-dimensional pseudo-oscillator wavefunction. In 
this way it is possible to obtain the analogue of integral transformations (Barut and 
Girardello 1971, Bargmann 1961, 1967, Kramer et a1 1977) for the hyperbolic 
coordinate system. In conclusion, it should be noted that the self-reproducing kernel 
for (nu) functions (i.e. for the Whittaker functions) is the hyperdifferential operator 
exp[iz (H1 - H2)] connected with the two-dimensional Fourier transformation (Wolf 
1976). 

The approach developed in this paper can be easily generalised to an arbitrary 
pseudo-oscillator H,, and it will be useful for the analysis of the O(p, q )  spherical 
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harmonics. The construction of these harmonics may be fulfilled by means of the 
‘vector coupling’ procedure for the non-compact angular momenta belonging to 
discrete or principal series of UIR of the SU(1, l)d group. 
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